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University of Texas at Austin, Austin TX 78712
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1. SUMMARY 2. INTRODUCTION

The perceptual mechanisms underlying texture and contour "Bottom-up" mechanisms for grouping and segregation are
grouping/segregation play a dominant role in determining the absolutely essential to object detection and recognition. To
visibility of targets in complex backgrounds. In most quantitative recognize an object in a typical natural environment, the features of
models of texture segregation the image is initially processed by the object must be segregated, at least to some extent, from those of
channels selective along certain fundamental stimulus dimensions the surrounding objects and surfaces.
such as spatial frequency and orientation. These channels generally
contain a nonlinearity, such as full-wave rectification, so that they In recent years, most models of grouping/segregation have been
signal the local contrast energy within the bandpass of the channel. based upon mechanisms which compare, across space, the contrast
Another stage of linear filtering, followed by a simple edge finding energy within spatial-frequency and orientation tuned channels
or thresholding mechanism, is then applied to the channel outputs to (e.g., for reviews see, Bergen, 1991; Bovik, Clark, & Geisler, 1990;
find the texture boundaries or regions. Although these channel- Graham, Beck and Sutter, 1992). While such grouping/segregation
energy models have been successful in predicting texture mechanisms may exist within the human visual system there are at
segregation and discrimination performance for some classes of least two grouping abilities they cannot explain. First, humans are
stimuli, there are large classes of stimuli that are readily segregated able to segregate image regions based upon differences in the local
by human observers but which cannot be segregated by channel spatial structure, even when the channel energies are the same
energy. The evidence suggests that more sophisticated models (Thornton, et al. 1998; see later). Second, humans are able to detect
incorporating perceptual organization mechanisms will be required spatial structure and statistical regularities that vary smoothly over
to predict human texture and contour segregation performance. space (i.e., non-stationary image structure). The most well-known
This paper describes new experimental evidence, and a working example of this is the ability of humans to detect a contour formed
model which, in principle, can account for a wider range of human by a sequence of line segments (a dashed contour) embedded in a
segregation and grouping capabilities. The premise of the model is background of randomly oriented line segments (e.g., Sha'ashua &
that the visual system typically extracts rich descriptions of local Ullman, 1988; Field, Hayes & Hess, 1993; see later).
image structure, and that it uses these descriptions for subsequent
segregation and grouping. The model contains physiologically- The aim of this paper is to demonstrate some of the weaknesses of
based low level mechanisms for extracting primitives, matching the channel energy models and to demonstrate how some of those
mechanisms for detecting structural similarity, and grouping weaknesses might be addressed by models incorporating
mechanisms for binding structural parts into wholes. Quantitative mechanisms which explicitly extract and use local image
predictions of the model for contour segregation performance are structure-image structure models. We begin by briefly describing
presented. a generalized channel energy model and an image structure model.
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Next, we describe an experiment demonstrating that humans can

Figure 1. The generalized channel energy model for easily segment large classes of textures which are impossible even
segregation and grouping. The input image is a complete set for an optimal channel energy model. We also show that an image
of filter pairs each tuned to a different spatial frequency and structure model can segment such textures. We then describe
orientation. One filter pair is shown in the figure. The parametric measurements of contour detection performance and
responses of each filter in the pair are squared and then show that a very simple image structure model is able to account for
summed, mimicking the response of a complex cortical cell in most aspects of the data.
area VI. The responses (either with or without smoothing)
form an "energy" image. In the most general case, the 2.1 Generalized Channel Energy Model
responses in a region are represented by a histogram of the
response magnitudes taken over the region. Figure 1 illustrates the generalized channel energy model of

segregation and grouping. In this illustration, the input image
consists of a target region of diagonal ellipses in a background of
vertical ellipses. The input is processed by 30 separate spatial-

Paper presented at the RTO SCI Workshop on "Search and Target Acquisition ", held in Utrecht,
The Netherlands, 21-23 June 1999, and published in RTO MP-45.
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frequency and orientation tuned channels (6 frequencies x 5 texture regions. This texture is difficult to segment on the basis of
orientations), with spatial frequency bandwidths of I octave, and generalized channel energN because of the random sizes, positions
orientation bandwidths of 30 deg. The quadrature pair of receptive and orientations of the elements. We now describe some of the
fields corresponding to one of the channels is illustrated in the more important components of the model in a bit more detail.
second panel. 'The channel energy at each pixel location in the
image is obtained by summing the square of the responses from the 2.3.1 Similarit" lfcasure
two quadrature components. One can think of the channel energy at
a pixel as a response similar to the one that would be produced b\ a To determine the structural relationships between groups, there
complex cell in primary visual cortex centered on that pixel. Next. must be some mechanism for measuring the similarities (or
the channel energy may be smoothed, or not smoothed, depending equivalently, differences) of the groups along relevant stimulus

on the specific version of the model. As can be seen, the channel dimensions. We assume this is done in parallel across the groups
encrgy is greatest in the region of the image where the ellipse (e.g.. across the "'elements'" in the third panel of Figure 2) by a
orientation is similar to that of the channel. In the generalized matching process. In the current version of the model, we suppose
energy model, the responses in a region are represented by a that the matching process measures differences between the groups
response histogram tallied over all the pixel locations in the region, along stimulus dimensions which include form/shape ( DI).
In this illustration, the response range was divided into 15 equal- position ( D ). orientation ( DQ ), size ( D, ), symmetry ( D, ), and
width regions. In a more conventional energy model, the responses DI

in a region are represented by the sum or average response in the continuation ( D ). The definitions of these grou? diffrces are
region (i.e.. the mean of the histogram). The generalized histogram described in more detail in Geislcr & Super (1996/99). Iater we
model extracts some local spatial phase information and hence give the definitions for position and continuation. Our working
predicts that hunmns can discriminate a wider range of textures than hypothesis is that the potential for binding the two groups together
predicted by a conventional energy model. Nonetheless. the is given by the (totl group) df'reunce. which is a linear weighted
experiment described later shows that there are many textures sum of the group differences:
humans can segregate. which the ideal generalized channel energy
model predicts cannot be segregated. D = wD1 D + w/,D1, + woDO + w., 0, + w,'Dr + wDB (1)
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Figure 2. An image structure model for segregation and We suppose that the visual system has some control over the
grouping. The input image is encoded into local primitives (in weights and hence may favor some dimensions under certain
this case oriented line segments). Initial groups are formed situations.
by associative grouping. The initial groups are compared by
a matching process to measure their similarities/differences. 2.3.2 Simple and( :ssociative Grouping

Higher order groups are obtained by another stage of simple
or associative grouping. The processes of matching and We assume that there are two basic grouping mechanisms which the
grouping may be repeated. visual system may use. The first is to bind together groups for

hich thie total group differences arc small. We call this simple
2.2 An Image Structure Model grouping. More formally, if the total grouping difference ( D,)

Figure 2 illustrates an image structure model of segregation and between groups g, and g, l Is below some criterion (,3) then the

grouping. In this illustration, the input image consists of a target groups are bound together:
region of circles in a background of randomly oriented ellipses.
The input image is encoded as a collection of local primitives if D,1 < 13 then g, o g, (2)
(oriented pieces of contour). Different choices for the primitives
are possible; in one version, we obtain the primitives by where the symbol "o" represents the operation of binding. In this
thresholding the responses of model simple cells toned to different definition. D, may represent the weighted sum of grouping
orientations (Geisler & Super. 1996/98). 'The primitives arc
represented by the small segments in the second panel. Next, differences for all the dimensions except position (proximity). For

associative grouping of the primitives (described below) is used to simple grouping we assume that the weight on the position

obtain initial groups, which, in this case. correspond to the difference is zero. This assumption is required in order for simple

"elements." The initial groups are then compared with one another grouping to extend across significant spatial distances.

by a matching process, under some family of transformations (e.g..
translation, rotation and scaling). The matching process produces Associative grouping, combines proximity grouping with simple

measures of the similarities/diff'erences between the initial groups. grouping and a transitivity rule. Just as in simple grouping, if the

In this case, the element shapes within the target and background total grouping difference betwveen groups g, and g, falls below

regions match each other, but do not match across the regions. some criterion then the groups are bound together:
Finally, the grouping process is applied to the initial groups using
the similarities/differences found by the matching process. if D, < 8 the0 g, Og, (3)
Grouping on the basis of shape similarity will correctly segment the
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The task was to decide whether a rectangular target region, filled
In addition, if group i binds to groupj and groupj binds to group k with one texture, was oriented vertically or horizontally within a
then groups i and k are bound together: background region, filled with another texture. The location of the

target region was random from trial to trial.

if gigj& giogk then gigk (4)

In this definition, D,4 represents the total grouping difference, a b

which includes the position/proximity grouping difference. :n

Our working hypothesis is that the visual system tries a number of d K
values of the binding criterion either simultaneously or sequentially,
and then picks values based upon three rules: the stability rule, the
performance rule, and the recognition rule. The stability rule is a
"bottom up" rule which depends upon the dynamics of group I
formation. When the binding criterion is varied there will be ranges region a region b
in the value of the binding criterion where the pattern of grouping is
changing rapidly and there will be ranges where the grouping is
stable. The stability rule is to pick values from ranges where the" i
grouping is stable (see Estabrook, 1966 for a similar concept of Ld[,
classification). The performance rule is a "top down" rule where
the criterion is adjusted or selected based upon improving task
performance. The recognition rule is a top down rule which
depends upon feedback from subsequent recognition processes. a - b
The rule is to pick values of the binding criterion that yield
recognized objects/parts when the groups are analyzed further; we
suppose that this further recognition analysis is occurring
simultaneously while the binding criterion is being varied. A
2.3.3 Repeated Grouping

An important aspect of the image structure model is that the squared-difference
grouping processes are carried out repeatedly. First, associative or histogram
simple grouping is applied to the detected primitives to find initial
groups. After matching, which provides new grouping differences,
associative or simple grouping is applied again to obtain higher
order groups. Although not indicated in Figure 2, there may be
additional repetitions of matching and grouping. It is the repeated
applications of matching and grouping which provide the detailed
description of image structure.

3. EXPERIMENT 1 I Di

Thornton & Geisler (1998) showed that conventional channel
energy models predict that certain classes of texture are impossible Figure 3. Initial processing steps of the general channel
to segregate when, in fact, humans find them easy to segregate. energy model applied to the segregation task of Experiment
The classes of textures they considered are similar to those in 1. For each channel-energy "image" a histogram is
Figure 2 (see also Victor & Brodie, 1978). The target and computed for regions a and b. The histograms are
background regions consisted of elements that differed in shape, but differenced, squared and summed to obtain a measure, D,
were randomized in orientation, size, and position. of the histogram difference for each channel.

In the present experiment we tested whether similar results hold for 3.1.2 Stimuli
generalized channel energy models, which assume that the human
visual system uses the additional information which is contained in The exemplars for any given texture stimulus were created by
channel response histograms computed over texture regions. The filling a rectangular "target" region (2 by 4 deg) with elements of
generalized channel energy models are more powerful and hence one shape, and filling the square "background" region (8 by 8 deg)
more difficult to reject. To test these models we developed a with elements of a another shape. The shapes were always
special procedure for constructing the texture segregation stimuli, smoothly connected contours. They were generated by summing

sinewave components with frequencies in orientation that were
3.1 Methods harmonics of one cycle per 360 deg. Different random shapes

were obtained by randomly selecting the radial amplitudes and
The logic of the experiment is quite simple. Construct texture phases of the components and then filtering (i.e., multiplying the
segregation stimuli for which the optimal generalized channel amplitudes by a transfer function). Exemplar texture stimuli were
energy model is at chance performance in a forced choice task. If created by filling each region (target or background) with non-
the human observers can perform the segregation task at above overlapping elements having a single shape, but random size,
chance then the general class of channel energy models is rejected. position, and orientation. For the purposes of creating the stimuli,
The difficult part is in constructing the stimuli, each element was represented by a virtual circumscribing box.
3.1.1 Task The virtual boxes were randomly placed one at a time within the

image, with the restriction that if a new virtual box overlapped an



15-4

existing one then a new clement was selected. The center of the Optimal performance was achieved by applying a maximum

circumscribing box was allowed to just touch the invisible border likelihood decision rule to the channel responses produced on each

defining tile regions; this resulted in texture regions with a trial. First. we computed the sun of the squared difference in tile
"natural," irregular appearing boundary. In order to insure that histograms for regions a and h, for each channel. In Figure 3, DI
segmentation of target and surround was due solely to specified represents the value of this quantity for the ith channel. Then, we
regional differences in local shape. first order cues of luminance computed the probability that these 30 values were generated by a
and contrast were balanced across regions and exemplars by vertically oriented target region and by a horizontally oriented
keeping pixel density constant, target region. The response wvas which ever orientation was more

probable.
0 foils
[3 nonfoils The probability densities for the two orientations were assutmcd to

STT LS be adequately represented by 30-dimensional nmultivariate normal
90 - density functions (one dimension for each channel) with arbitrary

mean vectors and covariance matrices. The mean vector and

70- 0 covariance matrix for vertical targets was estimated from a large
number of exemplar vertical stimuli. Similarly, the mean vector

50 - and covariance matrix for horizontal targets was estimated fiom a
/ / , Ilarge number of exemplar horizontal stimuli,

0 100 200 0 100 200

90 o 3.1.3 Procedure

Observers made forced choice target orientation decisions

70> ("vertical"/ "horizontal") to individual texture exemplars presented

I3 in blocks of 96 trials. Target orientation was random and balanced
L) across blocks. All texture stimuli \vere presented briefly at
CZ 50

r I I 5 - maximum contrast, and were followed by a matched pattern mask

0 100 200 0 100 200 and feedback tone. Presentation duration was varied across blocks[ .to obtain psychometric functions.

90 - -

1 0 
E T T

70 1 model

50 r r 7
0 50 0 50 100 150 80

presentation duration 60
(msec) 60

Figure 4. Texture segregation accuracy as a function of foils nonfoils

stimulus duration for two subjects. The shapes on the right 100
indicate the shapes of elements in the target and background . 100
regions. The size, orientation and position of the elements in

each region were random. The optimal channel energy 80
model is at chance performance for these stimuli. Io 60

From many texture exemplars generated in the above fashion. weselected a subset for which the generalized channel energy model foils nonfoils

was at chance. To do this we simply collected exemplars that were

mnisclassified (i.e. "foils"). These "foils" were then combined wýith 100
a number of correctly-classified exemplars to form a stimulus
ensemble that by definition yields 50% correct performance. In 80the experiments reported here, all stimuhlus ensembles were

selected in this manner. 60

The key step in generating the stimulus ensembles was
determining the optimal performance for the general channel foils nonfoils

energy model in the segregation task. Figure 3 illustrates the
initial sequence of processing for the segregation task. On each Figure 5. Segregation accuracy for three texture stimuli, for a

trial, a set of 30 energy "images" were computed as per the process human observer and an optimal generalized channel energy
described in Figure 1 (one image for each of the channels model. Stimulus duration was 200 ms.
comprising the model's front-end). The first panel in Figure 3
represents one of these energy images. To be conservative, we 3.2 Results
determined model performance assuming that the target could
appear in only one of four locations: a. b, c. and d in Figure 3. Figure 4 shows the texture segregation performance for two
(The human observers were confr'onted with greater uncertainty subjects on three different textures. The shapes of the elements in

because the targets were randomly positioned within the central the textures are shown on the right. The results demonstrate that

region.) even for brief presentations the human observers arc performing
better on these stimuli than the optimal channel energy model.
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function of contour shape and length. This is a particularly useful
However, it is possible that during the course of the experiment task because it involves complex naturalistic judgements under
subjects are learning and using histogram differences for the high degrees of uncertainty; yet, the predictions depend upon very
specific stimuli in the experiment. To test this possibility, we few parameters in the image structure model.
created stimulus ensembles that consisted of approximately 10%
foils and 90% non-foils. We computed the optimal histogram 4.1 Methods
model for these particular stimuli and then determined the
performance of the optimal model on these same stimuli (which Accuracy was measured in a two interval forced choice task for
overestimates of the model's performance). Figure 5 shows the detection of line-segment contours in a background consisting of
performance of the model and one of the subjects on these randomly oriented line segments. Four properties of the randomly
ensembles. The subject outperformed the optimal channel shaped contours were parametrically varied: amplitude, fractal
histogram model, even though the model was being given an exponent, length, and level of orientation jitter of the contour
unfair advantage, elements. This family of contours was selected to be

representative of a broad range of naturalistic contours.
3.3 Discussion

4.1.1 Stimuli
This experiment demonstrates that human observers can, in brief
presentations, segregate image regions based solely on differences Figure 6 illustrates the time line for a single trial, including
in local image structure. This result is undoubtedly quite general examples of a background and a background + target. The circular
because the texture elements in this experiment were picked display was 12.3 deg in diameter (32.5 pixels/deg), at the viewing
arbitrarily. Indeed, we have similar preliminary data for other distance of 112 cm. The line-segment elements were 0.31 degrees
element shapes. in length. The target contour and background texture were created

in a fashion similar to that in Experiment 1. For purposes of
Although generalized channel energy models represent some creating the stimuli, each line element was represented by a virtual
information about local image structure (i.e., phase information), circle with a diameter equal to twice the element length. The
they do not represent sufficient structural information to segregate virtual circles were randomly placed one at a time in the image
the class of stimuli described here. This creates difficulties for all with a restriction that if a new virtual circle intersected an existing
channel energy models proposed to date, because these models do one then a new random position was selected.
not segregate as accurately as the optimal generalized channel
energy model considered here.

i F. . . . ... F 'F -'..' •\ , / 'F /I' "® .•S/ i - / i\ • t x /\ F F F

F' -. / -l ,- i / -l l / -- , ._ F t

- -. ' F - .\.. \ \1- - F -- . \ 'F F /-

500 mns 222 222 500 222 222 1000 ims
The shape of the contour was generated by summing sinewave

Figure 6. Example stimuli and presentation sequence for the components with frequencies that were harmonics of 0.5 cycles per
contour detection experiment (Experiment 2). image. The sinewave components always modulated about an axis

through the center of the display; the orientation of the axis was
Of course, it is intuitively obvious that the human visual system random on each trial. Different random contour shapes were
extracts precise descriptions of local spatial structure. What the obtained for each trial by randomly selecting the amplitudes and
experiments here demonstrate is that the visual system uses such phases of the components, and then filtering (i.e., multiplying the
descriptions to perform fast ("preattentive") region segregation. amplitudes by a transfer function). The line elements were
Although not demonstrated here, image structure models can randomly placed on the contour first. Then the background line
segregate the kinds of textures considered in this experiment. elements were added such that the density of line elements in the

background was the same as along contour.
4. EXPERIMENT 2

Contour detection accuracy was measured parametrically as a
The second ma~jor class of tasks that pose a difficulty for channel function of four variables: (a) the fractal exponent of the amplitude
energy models are those that involve grouping of regions transfer function (1, 1.5, 2, and 3), (b) the RMS amplitude of the
containing smoothly changing image structure, such as smooth contour modulation (6.5%, 12.5%, 25%, and 50% of the display
contours. To obtain additional systematic data on human ability to diameter), (c) the contour axis length (20%, 40%, 60% and 80% of
group contour information, and to provide a test of the image the display diameter), and the range of orientation jitter of the
structure model, we measured contour detection performance as a elements (0, 30%, 50%, and 70% of the maximum value, 180').
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RMS amplitude (%)
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Orientation jitter range (deg) Figure 9. Length = 40% of display diameter. See Figure 7.

Figure 7. Length = 80% of display diameter. Open circles: RMS amplitude (%)

contour detection accuracy for random contours, as a 6.25 12.5 25 50
function of contour shape (fractal exponent), average 90
contour amplitude (RMS amplitude), and magnitude of 70'3
orientation jitter of the elements (Orientation jitter range). 70 3

Solid stars: predicted performance of a two-parameter 50
image structure model. 90

RMS amplitude(%) 070 -2* * 2
80C

6.25 12.5 25 50 50 00-

90 CZ 90 C70•

70 3 °70 1 L)
50 ,< 15550 L

90 9So90
0470 2 (D7* *2 70 * 1
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-o 50 .

970 *, 204060 204060 204060 204060

70 1.5 FuOrientation jitter range (deg)

0. Figure 10. Length = 20% of display diameter. See Figure 7.

70 * * 1 Each experimental session consisted of 16 blocks of 30 trials and

50 * , , lasted approximately 40 min. In each block, the stimulus
parameters were held fixed. The order of conditions was picked to

20 40 60 20 40 60 20 40 60 20 40 60 minimize systematic practice and fatigue effects. All conditions

Orientation jitter range (deg) were repeated twice for a total of 60 trials per condition per
subject.

Figure 8. Length = 60% of display diameter. See Figure 7.
4.2 Results

4.1,2 Procedure
Figures 7-10 show the results for two subjects. Each figure is for a

As shown in Figure 6, on each trial the fixation cross was different contour length. [lie open circles in each panel within a
extinguished 222 irs before presentation of the two test intervals. figure show the average accuracy for the two subjects as a function
which were each 222 mis in duration and separated by 720 ms. of the range of clement orientation jitter. (At the time of writing,
After the sublject responded, he was informed about the correctness the data for this experiment were not complete, so some data
of the response, and shown the actual location of the contour, points represent results for only one subject.) The solid stars show

the predictions of an image structure model described below.
Across rows. the plots are for contours of diff'erent fractal
exponents. Across columns the plots are for contours of different
RMS amplitudes. The panels with only two points indicate
conditions where all non-zero levels of jitter were not tested, based
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upon pilot experiments showing that performance was poor even summed grouping differences (the strongest binding) was picked
with 0%jitter. as the interval containing the contour.

There are some obvious trends in the data. Performance generally There are only two parameters in this model: one of the
improves with increases in the fractal exponent and contour length, dimensions weights, Wp, and the binding criterion, /.
and generally declines with increases in RMS amplitude and jitter. The other dimension difference weight, W, is not free because the
Although these trends are not surprising, the specific levels of
performance in the different conditions provide strong constraints weights sum to 1.0.
on models of contour detection. We now define the group difference measures. These particular

4.3 Discussion measures were devised on the basis of intuition, and a little trial

and error. No great significance should be attached to these

This experiment provides a parametric overview of human' specific formulas. Undoubtedly, there are other related formulas

capabilities for detecting contours in noisy backgrounds. As the which would capture the same information about the differences

data show, humans are quite good at detecting contours even when between line segments.

there is great uncertainty in location, orientation, and shape of the
target contour. For example, contours like that in the middle The position difference, D1 , was taken to be the Euclidean
picture of Figure 6 are detected with better than 90% accuracy. distance between the nearest pixels in the two line segments.

We used this measure based upon experimental results of Geisler

It is generally acknowledged both by perception and computer & Super (1996/99), who found that proximity grouping is better
vision researchers that humans have a remarkable ability to detect described by the near point distance than by the distance between
spatial structure and statistical regularities in images, even when object centroids. Note that because of the position difference
the structure is unfamiliar (e.g., see Witkin and Tannenbaum, component, the computation of the total difference, D, is a local
1982). Thus, our initial assumption was that the relatively simple process; only neighboring line segments influence the groups that
class of image-structure models described here would be unable to are formed.
achieve the performance levels of humans in the present
experiment. Our aim in testing the models was to identify
conditions where the models fail to predict performance, with the a b
hope that these failures might provide hints about what additional
mechanisms the human visual system may be using. To our __-_-_--____|

surprise, a simple image structure model (with just two free I
parameters) does a good job of accounting for the data, suggesting I
that human contour detection performance in these types of
displays may be largely explained by relatively simple, essentially
"bottom-up," processing. C d

In the specific model described here, the input was taken to be all
the individual line segments in the display (not the individual •
pixels). This is equivalent to assuming that primitive detection and
initial grouping have already found the groups corresponding to
the individual line segments. Thus, the primary computations in
the model consisted of a matching stage which compared line Figure 11. Illustration of the continuation difference
segments and a subsequent grouping stage which bound them into measure. Each sub-figure shows a pair of line segments in
groups (see Figure 2). some configuration. The solid dot shows the centroid of the

group formed by the two segments. The long "error bar"
Because the line segments were all of the same size and form, shows the orientation of the major axis; the short "error bar"
equation (1) reduces to the weighted sum of the position the orientation of the minor axis. The position difference is
difference, orientation difference and continuation difference, the ratio of the standard deviations computed along the two
Furthermore, we found that the information extracted by axes (through the centroid); this quantity is approximately
continuation difference (which had not been considered in Geisler the length of the short "error bar" divided by the length of the
& Super, 1996/99) was redundant with the orientation difference, long "error bar."
so we could eliminate the orientation difference. Thus, equation
(1) reduces to: The continuation difference, De, is a straight-forward measure

meant to capture (in conjunction with the position difference

D = wpDp + w.D. (5) measure) the degree to which two line segments could be smooth

continuations of each other. Note first that any two line segments
The value of D was computed for each possible pairing of line can be considered as a single group of points. This group will
segments in the image. Groups were then formed by applying have a centroid, and a major axis, which is the best fitting line
associative grouping for a particular value of the binding criterion, passing through the centroid. The continuation difference is
/6. In other words, we computed p,, for each possible pairing of defined to be the ratio of the standard deviation of the distance of

line-segment groups, g, and g,, and then applied the associative the points from the major axis divided by the standard deviation of
the distance of the points from the minor axis (the axis

grouping rules given by equations (3) and (4). This was done for perpendicular to the major axis):
the stimuli in both intervals in the forced choice presentation. The
longest group obtained in each interval was then selected. Which
ever of these two groups had more elements was picked as the D, _ (6)
interval containing the contour. If the two groups happened to °-

have the same number of elements then the group with the smallest
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Note that this measure varies between 0 and 1. Figure II energy models. hie heart of the diflficulty for such models is that
illustrates how this measure behaves. The longer "error bar" in the human visual system extracts detailed local spatial structure
each sub-figure indicates the orientation of the major axis, the and is able to use it for grouping and segregation. Unfortunately,
shorter "error bar" the orientation of the minor axis, and the solid we see no way to avoid the difficult problem of modeling how the
dot the centroid. The continuation difference is roughly visual system extracts and represents spatial structure. Although
proportional to the ratio of the length of the short "error bar" to the image structure models cannot yet be easily applied to arbitrary
long "error bar." When the two line segments fall along a straight images. we have made a start, and we have demonstrated that they
line (Figure 11 a) then the standard deviation about the major axis can be quite effective in limited domains. In particular, a very
is zero, and hence the continuation difference is zero. If the simple image structure model that combines local measures of
second line segment is rotated (Figure 11 b) the standard deviation proximity and continuation can account for human ability to detect
about the major axis increases and so does the continuation random contours that are representative. in complexity and
difference. Ifthe second line keeps the same orientation difference uncertainty, of those occurring in the natural environment.
but is shifted vertically so that it is more consistent with a smooth
contour (Figure I Ic), then the continuation diifference decreases. 6. REFERENCES
For a given orientation difference between the line segments, the
closer the line segments the greater the continuation difference Iergcn, .1. R. "Theories of visual texture perception." In 1).
(compare Figures I c & Il Id). This is consistent with the fact that Regan (Ed.), Vision and visual dysfunction (Vol. 1013: Spatial
a greater curvature would be requlired to connect the two line vision. pp. 114-134). Newv York: Macmillan. 1991.
segments when they are closer.

Bovik. A. C.. Clark. M.. and Geisler. W. S. "Multichannel
The model contained one additional constraint. Although the texture analysis using localized spatial filters." Pattern Anaolsiys
contours were random in orientation, shape. and position on every and Machine Intellig•ence, 12. 55-73, 1990.
trial in a block, there was always some limitation on the possible
locations of the contours. These limitations were obvious to the Estabrook. G.F. "A mathematical model ingraph theory for
subjects when running the experiment. The model was also given biological classification." Journal of Theoretical Biology, 12.
this information: it did not consider groups which fell outside tile 297-310. 1966.
region of possible contour locations.

Field, D... I layes. A.. and I less. R. F. (1993). Contour

To estimate the best fitting parameter values, a coarse grid search integration by the human visual system: evidence for a local
was followed by a more refined grid search at the most promising "association field". lision Research, 33(2). 173-193.
locations. For each pair of parameter values. the performance of
the model was computed for exactly the same stimuli that the Geisler. W.S. and Super. 1,.J. Perceptual organization of two-
subjects saw. dimensional patterns. Psxcholoyical Review', under review.

The solid stars in Figures 7-10 show the predictions of the model. Geisler. W.S. and Super. 13.1. Perceptual organization oftwo-
As can be seen. the model does a remarkably good .job of dimensional patterns. UT-CVIS-TR-96-002. Austin, Texas:
predicting the performance across all tile conditions. The Center for Vision and Inage Sciences. 1996.
estimated parameter values are as follows: tt, = 0.2, w. 0.8-

Graham, N., Beck..J., and Sutter. A. "Nonlinear processes in
/6 = 0.17 spatial-frequency channel models of perceived texture segregation:

effects of sign and amount of contrast." Vision Research, 32(4),
Importantly, these parameter values, which fit the human data best. 719-743. 1992.
are also the values that maximize the absolute accuracy of the
model in the task. In other words, combining local measurements Sha'ashua. S.. and U Jllnan. S. Strucliwal salienc. Tie detection of
of distance and continuation so that they produce the greatest gl-hall, salient stuctures usinu* a locallt connected network.

accuracy in the model, also yields a model performance that is Paper presented at the Proceedings of the Second International
close to human performance. This fact adds some support for this Conference on Computer Vision. 1988.
class of models.

Thornton. T. and Geisler. W.S. T-Iexture segregation on the basis
Further, the results suggest that human contour detection in these of local shape information.- h'estipativC Ophthalmologv &
types of displays may involve only, local measures of group Visual Science Supplement. (ARVO) 39/4, S649, 1998.
differences followed by an unsophisticated grouping mechanism.
such as associative grouping. Something similar to the local Victor. J.D. and Brodie. S.F. ")iscriminahle textures with
grouping difference measures and associative grouping should be identical Btuffon needle statistics." Biological Cybernetics, 3 1,
relatively easy to implement neurally. 231-234. 1978.

Finally, if the human visual system is using these simple Witkin. A. P., & Tenenbaum. .1. M. On the role of structure in
mechanisms then the results imply that it has evolved or learned vision. In J. Beck. B. I lope. & A. Rosenfeld (Ids.), lfiaan and
nearly optimal weights for combining local difference information Alachille Iision (pp. 481-543). New York: Academic Press, 1983.
and nearly optimal criteria for controlling associative grouping.

7. ACKNOWLEDGEMENTS
5. CONCLUSION

This work was supported by grants from the National Eye
The experiments and analyses reported here demonstrate that there Institute. NIl 1.
are many texture grouping and segregation situations that are
difficult to model within the friamework of the generalized channel


